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By using the first integrals of the equations of motion of a gyroscope 
on gimbals it is shown in this paper that an arbitrary small perturba- 
tion of the inner ring causes a precessional motion of the outer ring, 
which displaces the rotor axis from its initial position. 

Rumiantsev [ 7.8 1, and Skimel [ 10 1 have constructed the Liapunov 
functions and given the conditions for stability of the regular pre- 
cession and for the permanent rotation of a heaw gyroscope. In the above 
investigations the case of permanent rotation of an equilibrated gyro- 
scope about an arbitrary axis has been omitted. 

By the use of the equations of motion and the resulting quadratures 
of a gyroscopic system [ 1 1 as obtained by Chetaev [ 9 1 and Skimel [ 10 1 
the instability of the axis of the gyroscope figure can be demonstrated. 
The equations of motion have the form 

&=- 
JR, (sin 9 - sin 80) J2C2,2 (sin 8 - sin 9&P -__- 

A-Bssin”9 ’ 
4% ==: &a - ____ 

J,V - B sin2 4) (1) 

Here $I Is the rotation angle of the outer ring, 8 is the rotation 
angle of the inner ring about its axis of rotation (this angle is meas- 
ured with respect to coordinates fixed in the outer ring), J is the 
moment of inertia of the rotor about its spin axis, a,,, &, and a0 are 
the initial values of the angular velocity of the rotor, angular velo- 
city of the outer ring and the rotation angle of the inner ring (this 
angle is measured from such position of the inner ring when the spin 
axis is perpendicular to the outer ring). 

A = “p + .p + J,, B=f,(2)-+.&--Jp, JB=J,fe)+Jz (2) 

Here J,(l) is the moment of inertia of the outer ring about its axis 
of rotation, Jzc2), J (*I and Jzt2) 

Y 
are moments of inertia of the inner 
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ring with respect to the I-, y- and z-axes forming an orthogonal system 

where the x-axis coincides with the spin axis and the y-axis with the 
axis of rotation of the inner ring, and Jz is the equatorial moment of 
inertia of the rotor. 

It is easily seen that for an arbitrary value of 8 

JC(4)=A-Bssin29>0, J, >0 (3) 

The second equation in (1) is the equation of the family of ‘phase” 
trajectories in the phase plane (8, ‘8 ) with parameters 8,, 4, . All 
these phase trajectories are symmetric with respect to the axis 8 = 0, 
for if ( 8, $ ) is a point on the trajectory, so is the point (8,-G ). 

Fixing 8, and varying 6,, we obtain a one-parameter family of trajec- 
tories, The Point C+ = 9,, 4 =O Is the center. In a sufficiently small 
neighborhood of the position of equilibrium all phase trajectories are 
closed. Indeed, we find now points of intersection of a phase trajectory 
with the axis 4 = 0. 

To obtain them we shall set 8 = 0 In the second equation of (1) and 
solve the resulting equation for sin S; we have then 

The condition for the existence of real roots S1 and S2 of Wuation 
(3) is given by the following inequalities: 

l<sin4,<1, -l<sin*,f 1. 

It is seen from Expression (4) that when a,, = l/2 R and >,, is suffi- 
ciently small (which means that ~1 is also small) then both inequalities 
are satisfied. 

In this way, to each sufficiently small value of the initial velocity 
9, corresponds a closed phase trajectory intersecting the axis & = 0 at 
two points S1 and S2 (Sl< 8, < 82). which are determined from Equation (4). 

The closed phase trajectories correspond to periodic solutions of the 
second equation in (1). The Initial conditions 4, =i, = 0 correspond to 
the position of equilibrium 8 ~8~. (I, E $,. 

Thus, in a certain neighborhood of the center, all solutions .S( t) are 
periodic. The function Is also periodic, because If we substitute on the 
right-hand side of the first equation in (1) the periodic function 9 (t), 
then this right-hand side must also be a periodic function of time. 
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le shall find now the increment of the 

If T is the period, then obviously 

A() = \ $~‘a? 
0 

angle ftr in one period. 

Passing from the variable t to the variable 8 and utilizing the 
second equation of (1) we obtain 19,lO I 

dt = 
sign 9) 1/J, JfA - B sins 8 da 

Xi!, v(A- B sinZ4) ps - (sin9 -sin80)a ’ 

The integration with respect .to 8 should be carried out from a1 to 
S2 when sign 5 = 1 (4 is increasing), and from 6w to & when sign $ = 
- 1. 

In this way we have 

(sin 4 - sin SO) d9 

We notice that 

(A - B sina 8) p2 - (sin 8 - sinQ2 = (1 + 3~2) (sin 8a - sin 4) (sin 9 - sin 4) 

Aence 

A+=-2 f&i (sin 4 - sin a,) d9 
(6) 

ix 1/ (A - B sins 4) (sin 4 - sin 4,) (sin 8, - sin 4%) 

The elementary proof of the existence of the improper integral in (6) 
is omitted, but we shall prove that the integral in (6) does not vanish 
when p fl 0 and sin a,, f 0. 

We shall perform the following change of variables: 

Here 

sink = 
sin&-z1 

20 

21 = sin 41 + sin 8Z _ sin a0 z =sin9,--sin&,_r. 1/A - B sin2 a0 f ABP.+J 
2 -C$-ZQ* O 2 - 1 +&z 

(7) 

Then Formula (6) becomes 
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F (P, t) = 
j/J, + ABp2 sin t - BP sin t+,, 

0 (t; A, B) 0 (t; 1,1) 
-- 

0 (t; a, b) = [a (1 + b~~)~- b (p I/J, + ABp2 sin t + sin 8,,)2]‘~x 
(9) 

We shall assume that a(0) = lim a@) = 0 when p + 0. TO prove that 
in a certain neighborhood of the point p = 0 a(p) fl 0, it is sufficient 
to show that the function b(p) which is continuously differentiable with 
respect to p has at p = 0 a nonzero derivative. Differentiation is per- 

missible because the function F@, t) is analytic with respect to cc, and 
all its derivatives with respect to t are continuous in a certain neigh- 

borhood of /L = 0. 

Simple calculations give 

b (0) = 0, b’(0) = 
x (A - B) sin 8” 

2~0~~9, VA- Bsinz4, 

In this way the expansion of a(p) in Taylor series 

begins from the third term. and 

a2 = - 
TC J& (A- B) sin&, 

co9 9, v/A - B sin2 9,, 
(10) 

Thus, when p f 0, the increment h$ of the rotation angle of the outer 
ring in one period T of nutational vibrations of the inner ring does not 
vanish. It means that the gyroscope on gimbals is unstable. 

The axis of the figure performs a precession about the outer ring with 
a mean angular velocity # = h$/ T. 

From the second equation of (1) follows that the period of the nuta- 

tional vibrations is 

T= 
VA-Bsin28d4 

I/(sin 4 - sin &) (sin 9, - sin aj 

After changing the variables as Indicated In (7) and expanding T in 

the series T = T,, + T,p + . . . we obtain 

T, = 2~ I/JB(A- Bsin29,) 

JR, cos 8, 
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Thus, the expansion of I,$ in Taylor series 

begins with the term b,p2, so that 

ijJ, = - J, (J,(l) + J,t2)) 8,2 sina, 
---+. . 

2JJ, (6,) CL, co9 9, 

Formulas derived by approximate methods 
first term of this expansion. 
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